

Weapons & Materials Research Directorate

Three-Dimensional Computational Modeling of a Barricaded Munitions Stack Within a

Temporary Munitions Storage Area

Richard E. Lottero
Explosives Technology Branch
US Army Research Laboratory
19 June 2001

Support and Resources

Weapons & Materials Research Directorate

- □ Customer: US Army Defense Ammunition Logistics Activity
 - Supporting analysis to prevent a chain-reaction destruction of a temporary munitions storage area if a munitions stack is initiated
- ☐ HPCMP Major Shared Resource Center
 - US Army Research Laboratory
 - ➤ Aberdeen Proving Ground, MD
- □IBM SP Power3
 - > 512 processor configuration
 - > Run during pioneer mode
 - > 120-processor job
 - Final runs totaled approximately 20,000 cpu-hours

Situation

Weapons & Materials Research Directorate

- ☐ Field-Expedient munitions storage area
- ☐ Detonation of a donor munitions stack
 - > 4,000 kg NEW (nominal) of Composition B
 - > 72 pallets of 155-mm M107 rounds
- Water barricade
 - > Trapezoidal cross section
 - Constructed like Federal Fabrics-Fibers, Inc., water bag design
- ☐ Acceptor munitions stack
- □ 10-foot (3.05-m) standoff

Objective

Weapons & Materials Research Directorate

- ☐ Determine the blast and impact loading on the acceptor stack
 - ➤ Model this in a 3-D coordinates spatial system
 - Detonation of the donor stack
 - Dynamic response of the water barricade
 - ➤ Blast and impact loading on the acceptor stack
- ☐ Compare with previously reported 2-D computational results
- Assess possible implications regarding quantity-distance relief
 - Does the use of such a barricade eliminate some of the known or suspected modes of stack-to-stack propagation?

Donor Munitions Stack 2-D & 3-D Computations

Weapons & Materials Research Directorate

Terminal Effects Division

Munitions

- > 72 pallets, 8 rounds each of M107 155-mm projectiles
 - 3 pallets high, 4 wide, six deep
- ➤ 6.98 kg (15.4 lbm) composition B in each round
- ➤ Total explosive mass 4,024 kg (8,870 lbm)
 - Nominal for computations: 4,000 kg

Dimensions

- > Height 2.44 m (8.00 ft)
- Width 2.94 m (9.63 ft)
- > Depth 2.19 m (7.20 ft)
- ☐ Total mass (explosives, casings, packaging, etc.)
 - > 26,029 kg (57,384 lbm)

Trapezoidal Water Barricade

Weapons & Materials Research Directorate

- ■Based on Federal Fabrics-Fibers, Inc., water bag design
- Trapezoidal cross-section to mimic a pyramid of long water bags
 - > Height 2.44 m (8.00 ft)
 - Sides sloping at a 30-degree angle to the vertical
 - Width at top 1.00 m (3.28 ft)
 - Width at base 3.82 m (12.52 ft)
 - ➤ Mass of water/cm of depth is 58.71 kg/cm
 - Solid cross section (no air gaps, no bag material)

Experiment at China Lake 3.05-m (10-ft) Standoff

Weapons & Materials Research Directorate

Terminal Effects Division

■ Donor Stack

- > 576 M107 155-mm projectiles
- > Pallets 6 wide, 6 deep, 2 high
 - Width 2.06 m (6.75 ft)
 - Depth 4.13 m (13.55 ft)
 - Height 1.58 m (5.2 ft)

■Water Barricade

- > 3 bags
 - 1.37 m (54 inch) diameter
 - Pyramid of 3
 - Length 7.01 m (23 ft)

■ Acceptor stack

Various worst-case munitions

3-D Computational Layout 3.05-m (10-ft) Standoff

Weapons & Materials Research Directorate

- □ Donor Stack (used two symmetry planes)
 - "Virtual" full dimensions (used two symmetry planes)
 - Height 2.44 m (8.00 ft)
 - Width 2.94 m (9.63 ft)
 - Depth 2.19 m (7.20 ft)
 - Actual: A condensed rectangular parallelepiped of Composition B suspended with its geometric centerline on the geometric centerline of the "virtual" stack
- □ Acceptor stack (used one symmetry plane)
 - Actual dimensions equal to the donor stack "virtual" dimensions
 - Solid rectangular parallelepiped of iron
- Water barricade (used one symmetry plane)
 - Reference cross section
 - > Full Depth 4.986 m (16.36 ft)

Weapons & Materials Research Directorate

All Objects at Rest

Terminal Effects Division

Initial Flow Field Configuration

Fully Coupled Computation 3DC

Weapons & Materials Research Directorate

Terminal Effects Division

T=47.40 ms Elevation View

T=47.40 ms Plan View

Final Flow Field Configuration

Fully Coupled Computation 3DC

Weapons & Materials Research Directorate

Terminal Effects Division

T=47.40 ms Elevation View

T=47.40 ms Plan View

Initial Flow Field Configuration
Uncoupled Computation 3DU

Weapons & Materials Research Directorate

Terminal Effects Division

T=131.74 ms Elevation View

T=131.74 ms Plan View

Final Flow Field Configuration
Uncoupled Computation 3DU

Weapons & Materials Research Directorate

Terminal Effects Division

kg/cm depth: CompB=18.2 H20=58.7; Standoff=3.05 m C-Bbooster ■ C-B stock 18 borricade 16 acceptor 14 12 10 12 16 20 X (m) 980505 TRAP H20 BARR, 3.05 M STANDOFF 14381 Time=4,00007x10⁻²

Initial at T=0.00

Final at T=40.00 ms

Flow Field Configurations
Fully Coupled Computation 2DC

The 2-D Computational Flow Fields, Coupled & Uncoupled

Weapons & Materials Research Directorate

Coupled 2DUa

Uncoupled 2DUb

Barricade X-Direction Velocity: 3-D & 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 49.63 m/s

2DC = 178.2 m/s

2DUa = 173.4 m/s

Barricade X-Direction Acceleration: 3-D & 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = +56.28 km/s/s

3DC & 3DU = -0.99 km/s/s

2DC = +143.4 km/s/s

2DC = -19.22 km/s/s

2DUa = +125.2 km/s/s

2DUb = -20.89 km/s/s

Acceptor Stack X-Direction Velocity: 3-D & 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 16.07 m/s

2DC = 33.40 m/s

2DUb = 39.95 m/s

Acceptor Stack X-Direction Acceleration: 3-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

 $3DC \sim +1.0 \text{ km/s/s}$

2DC = +9.28 km/s/s

2DUb = 10.34 km/s/s

(2D Not Plotted)

Acceptor Stack X-Direction Acceleration: 3-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

 $3DC \sim +1.0 \text{ km/s/s}$

2DC = +9.28 km/s/s

2DUb = 10.34 km/s/s

(2D Not Plotted)

Acceptor Stack X-Direction Acceleration: 3-D & 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

 $3DC \sim +1.0 \text{ km/s/s}$

2DC = +9.28 km/s/s

2DUb = +10.34 km/s/s

Acceptor Stack Left Surface Average Overpressure: 3-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 1.05 MPa

3DU = 5.02 MPa

2DC = 38.90 MPa

2DUb = 49.96 MPa

(2D Not Plotted)

Acceptor Stack Left Surface Average Overpressure: 3-D & 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 1.05 MPa

3DU = 5.02 MPa

2DC = 38.90 MPa

2DUb = 49.96 MPa

Acceptor Stack Left Surface Average & Max. Overpressure: 3-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 1.05 MPa (Avg)

3DC = 48.80 MPa (Max)

3DU = 5.02 MPa (Avg)

3DU = 45.84 MPa (Max)

Acceptor Stack Left Surface Avg. & Max. Overpressure: 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

2DC = 38.90 MPa (Avg)

2DC = 233.7 MPa (Max)

2DUa = 3.60 MPa (Avg)

2DUa = 17.78 MPa (Max)

2DUb = 49.96 MPa (Avg)

2DUb = 486.8 MPa (Max)

Acceptor Stack Left Surface Avg. & Max. Overpressure: 2-D

Weapons & Materials Research Directorate

Terminal Effects Division

Peak Values

3DC = 1.05 MPa (Avg)

3DC = 48.80 MPa (Max)

3DU = 5.02 MPa (Avg)

3DU = 45.84 MPa (Max)

2DC = 38.90 MPa (Avg)

2DC = 233.7 MPa (Max)

Summary (1 of 2)

Weapons & Materials Research Directorate

Terminal Effects Division

☐ Acceptor stack dynamics

- Bulk velocity
 - Any 2-D
 Any 3-D
 - 39.95 m/s 16.07 m/s
- Bulk acceleration
 - Any 2-D
 Any 3-D
 - 10.34 km/s/s1.0 km/s/s
- ➤ Left Surface Average Overpressure
 - Any 2-D
 Any 3-D
 - 49.96 MPa
 5.02 MPa
- ➤ Left Surface Maximum Overpressure
 - Any 2-D Any 3-D
 - 486.8 MPa
 233.7 MPa

Summary (2 of 2)

Weapons & Materials Research Directorate

- □ 3-D computations indicate that initiation from direct shock overpressure is very unlikely
 - Peak is 0.234 kbar
 - ➤ Liddiard & Forbes indicate 3 4 kbar is needed
- Computations do not address:
 - Crushing
 - Shearing
 - Munition-on-munition impact loading
 - > Fragments
 - Cook-off of stack over time, with degradation of barricade
- □ Test at China Lake had one of two acceptors initiate at late time & after some translation
- Applicability to Q-D relief is a judgment call
- MSRC resources made computations possible